Oxygen Basic

Programming => Example Code => General => Topic started by: Arnold on October 09, 2017, 01:34:55 AM

Title: Calculating with big numbers
Post by: Arnold on October 09, 2017, 01:34:55 AM
Hi Charles,

this is a programming task of Rosettacode
http://www.rosettacode.org/wiki/Arbitrary-precision_integers_(included) (http://www.rosettacode.org/wiki/Arbitrary-precision_integers_(included))

and I am not very happy with my solution.
Calculating up to 1000 digits there is no problem but then the execution time grows very strongly. To calculate 5^19683 will take as much time on my old notebook as for gcc compiled 5^262144. I could not calculate this power with the Oxygenbasic code and I gave up after 2 hours.
Can I improve this code in some way? I know I use too many garbage collections, but I do not know how I can get rid of them.

Roland

Code: [Select]
'http://www.rosettacode.org/wiki/Arbitrary-precision_integers_(included)
'http://www.rosettacode.org/wiki/Arbitrary-precision_integers_(included)#Pure_C

$ filename "Arbitr_Prec.exe"
'include "$/inc/RTL32.inc"

include "$/inc/console.inc"

'Use Windows functions
! GetTickCount lib "kernel32.dll" () as sys

' return = a * b
' Handling of negatives and zeros is not here, since not needed.
function str_mult(string First, string Second) as string

    string a=First, b=Second, r ' result
   
    int ax = 0, bx = 0, rx = 0, al, bl
    int carry, n
    int an, bn, rn, t 'auxiliary

    al = len(a) : bl = len(b)   
    r = space (al+bl)
       
    ' grade-school method of multiplication
    for ax = al to 1 step -1
        carry = 0
        for bx = bl to 1 step -1
           rx = ax + bx
           an=mid(a,ax,1) : bn=mid(b,bx,1) : rn=mid(r,rx,1)                   
           n=an * bn + rn + carry
           mid r,rx, str(mod(n, 10))           
           carry = n \ 10             
        next bx
        rx--       
        int t=mid(r,rx,1) + carry
        mid r,rx,t
    next ax

    ' omit possible first place - zero
    if left(r,1) = "0" then return mid(r,2)   
    return r
end function


function str_exp(int b, int n) as string
  string res, a

  res="1"
  a=str(b)

  if n=0 then return res
 
  while n > 0
    if n and 1 then 'mod(n,2)=1 then 
      res = str_mult(res, a)
    end if
    n = n >> 1 '\= 2
    if n=0 then exit while   
    a = str_mult(a, a)
  wend

  return res
end function


for z=3 to 3 '4
for x=2 to 3
for y=1 to 2
   z1=str_exp(x,y)
   printl z1
   z2=str_exp(z,z1)
   printl z2

   t1=GetTickCount()
   printl "Calculatating 5^" z "^" x "^" y " which is 5^" z2 & cr

   z3=str_exp(5,z2)

   t2=(GetTickCount()-t1)/1000
   printl "Length for result of 5^" z "^" x "^" y " is " len(z3)
   printl "First 20 digits: " left(z3,20)
   printl "Last 20 digits:  " mid(z3,-20)
   printl "This took " str(t2,3) " seconds"
   printl
next y
next x
next z

printl "Enter ..." : waitkey

/*
GCC compiled:
Length of 5^4^3^2 is 183231
First 20 digits:  62060698786608744707
Last 20 digits:   92256259918212890625
This took xxx seconds
*/

output:

2
9
Calculatating 5^3^2^1 which is 5^9

Length for result of 5^3^2^1 is 7
First 20 digits: 1953125
Last 20 digits:  1953125
This took 0 seconds

4
81
Calculatating 5^3^2^2 which is 5^81

Length for result of 5^3^2^2 is 57
First 20 digits: 41359030627651383743
Last 20 digits:  82906055450439453125
This took 0.015 seconds

3
27
Calculatating 5^3^3^1 which is 5^27

Length for result of 5^3^3^1 is 19
First 20 digits: 7450580596923828125
Last 20 digits:  7450580596923828125
This took 0 seconds

9
19683
Calculatating 5^3^3^2 which is 5^19683

Length for result of 5^3^3^2 is 13758
First 20 digits: 67080354005587923286
Last 20 digits:  06702899932861328125
This took 277.9 seconds

Enter ...
Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 10, 2017, 02:22:15 AM

Hi Roland,

Here is your multiplier with most of the stringware replaced with byte overlays. I have verified it against examples/math/mulhuge.o2bas.

It does your large calculation in 1.4 seconds on my notebook, but I have not looked at the rest of the code.

Code: [Select]
function str_mult(string a,b) as string

    string r ' result
   
    int ax = 0, bx = 0, rx = 0, al, bl
    int carry, n
    int an, bn, rn, t 'auxiliary

    al = len(a) : bl = len(b)   
    r = stringbytes (al+bl,48) 'FILL 0000..
    byte aa at strptr a
    byte bb at strptr b
    byte rr at strptr r
    indexbase 1
    macro midval(b,i){ b[i]-48 } 'ASCII TO DIGIT VALUE
       
    ' grade-school method of multiplication
    for ax = al to 1 step -1
        carry = 0
        for bx = bl to 1 step -1
           rx = ax + bx
           an=midval(aa,ax)
           bn=midval(bb,bx)
           rn=midval(rr,rx)                   
           n=an * bn + rn + carry
           rr[rx]=mod(n,10)+48
           carry = n \ 10             
        next bx
        rx--       
        'int t=midval(r,rx) + carry
        rr[rx]+=carry 'FINAL CARRY
    next ax

    ' omit possible first place - zero
    if rr[1]=48 then return mid(r,2)   
    return r
end function

/*
a="4225678345671239269412376809064563457830987094214727890460503258124429509352125309123467889090967803"
b="9034098905607687535809534264324877930963452357175890408065643678402109067842097453251206046098340056"

ans1="38175196118078646234796018047078508876075927016257021775208337789644882612626336290568135391711676360295755214293161291134825045621348587392814424177752560047244220841334894056033458232344500841216968"
ans2=str_mult(a,b)
printl ans1
printl ans2
waitkey
*/

Title: Re: Calculating with big numbers
Post by: Arnold on October 10, 2017, 11:29:53 PM
Hi Charles,

this is really impressive. Your modifications for str_mult reduced the execution time by almost 99% (!). I also get a correct result for 5**262144. This example demonstrates again how important it is to deal with strings efficiently in time-consuming tasks and I will study the code very carefully. I learned about a new keyword: stringbytes; I already missed this functionality sometimes.

It is also remarkable that the function str_mult runs almost as fast as the multiply function in \examples\math\MulHuge.o2bas which is realized with assembler statements. This is another proof of OxygenBasic's speed.

Thank you again for your help. It will help me to understand some more examples where this approach is applied too.

Roland
Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 11, 2017, 10:49:20 PM
Hi Roland,

I'm glad you found it helpful.

There are lots of ways to make it go even faster. For instance, working with base10000 digits instead of base10 digits. In theory, this would give you a 16x boost in speed.

I've also got an algorithm for big number division, something I have always wanted to do. It is based on a series of shifting subtractions, similar to school-teacher punishment long division :)

Will post it later.

Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 15, 2017, 02:09:36 AM
First, the numbers are converted from ascii to binary by subtracting 48 from each digit. Then a lookup table is prepared with multiples of the divisor x1 x2 x3 .. x9. Then we are ready for the main algorithm.

Comparisons are made using the table values, and the selected table index becomes the value of the current digit. The selected number is then subtracted leaving a possible remainder. We then shift 1 place to the right for the next digit, and repeat the process until the right hand end is reached.

The devil is in the detail :)

Code: [Select]
  function div(string sa,sb) as string
  ====================================
  string a="0"+zerotrim(sa)
  int la=len a
  string b="0"+zerotrim(sb)
  int lb=len b
  tobin a : tobin b
  int lo=la-lb+1
  string o=nuls lo
  '
  'CREATE LOOKUP TABLE 1xB 2xB ..9xB
  indexbase 1
  string tbl[9]
  int i,j,k
  sbyte *ti,*tj
  tbl[1]=b : j=1
  for i=2 to 9
    tbl[i]=b
    @ti = strptr(tbl[i])+lb-1
    @tj = strptr(tbl[j])+lb-1
    cy=0
    for k=1 to lb 'add digits
      ti=ti+tj+cy
      if ti>=10 then ti-=10 : cy=1 else cy=0
      @ti-- : @tj--
    next
    j++
  next
  '
  sbyte aa at strptr(a)
  sbyte bb at strptr(b)
  sbyte oo at strptr(o)
  sbyte d,carry
  int i,j,k,c,cm
  sys pa=@aa
  for i = 1 to lo 'setting dividend digits
    c=9 'default digit
    for k=1 to 9
      cm=CompareMid(i,a,tbl[k]) 'lookup multiple of b
      if cm<0 then c=k-1 : exit for 'set digit
    next
    if c then 'perform subtraction
      @aa=pa+i+lb-2
      @bb=strptr(tbl[c])+lb-1
      cb=lb
      carry=0
      for j=1 to lb 'subtraction
        d=aa-bb-carry
        if d<0 then d+=10 : carry=1 else carry=0
        aa=d
        @bb-- : @aa--
      next 'next subtraction digit
    end if 'subtraction
    oo=c 'set dividend digit as subraction count
    @oo++
  next  'next dividend digit
  remainder=nullTrim a
  o=nulltrim o
  if not o then o=chr 0
  toasc o
  toasc remainder
  return o
  end function
  '

supporting functions
Code: [Select]
  macro tobin(s,  bb,le) {
  ========================
  int le=len s
  sbyte bb at strptr s
  while le
    bb-=48
    @bb++ : le--
  wend
  }
  macro toasc(s,  bb,le) {
  ========================
  int le=len s
  sbyte bb at strptr s
  while le
    bb+=48
    @bb++ : le--
  wend
  }

  function compareMid(int i, string a,b) as int
  =============================================
  i-- 'convert to base 0
  int la=len(a)-i
  int lb=len b
  byte aa at i+strptr a
  byte bb at strptr b
  if lb>la
    return -1
  else
    while lb
      if aa>bb then return 1
      if aa<bb then return -1
      lb-- : @aa++ : @bb++
    wend
  end if
  end function
  '
  function nullTrim(string a) as string
  =====================================
  byte aa at strptr a
  int la=len a
  int c=1
  while la
    if aa>0 then return mid a,c
    la-- : c++ : @aa++
  wend
  end function
  '
  function zeroTrim(string a) as string
  =====================================
  byte aa at strptr a
  int la=len a
  int c=1
  while la
    if aa>48 then return mid a,c
    la-- : c++ : @aa++
  wend
  end function


.
Title: Re: Calculating with big numbers
Post by: Arnold on October 15, 2017, 09:32:16 AM
Hey Charles,

you have already finished what I was about to do. But since I will never achieve your accuracy I will focus on your code. Will you work out the functions as a library? There are already many things possible, e.g.:

The idea to explore big numbers arose from Robbek's message:
http://www.oxygenbasic.org/forum/index.php?topic=1231.msg11994#msg11994 (http://www.oxygenbasic.org/forum/index.php?topic=1231.msg11994#msg11994)

and this can be done easily with your functions:

Code: [Select]
...
print "fibonacci" cr
sa=0
sb=1
time1=GetTickCount()
for i=1 to 4000
  sr=add sa,sb
'  print i tab sr cr
  sa=sb
  sb=sr
next
i-=1 ' adjust i
time=(GetTickCount()-time1) / 1000
print "fibo " i " = " sr cr
printl "This took " time " Seconds" cr
...

With a modern pc this will take 0.0078 seconds or less and this is really fast if one takes into account that the code does not play with changing the bases and/or grouping the digits to integers.

I have not yet explored the functions intensively but I noticed you also added some code for negative numbers. Is it already possible to calculate 1-1000, or -100*1 or -2*-3 ? I was about to implement Karatsuba's method for multiplication, but I noticed that I will need to calculate negative interim results in some cirumstances.

Roland
Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 23, 2017, 07:19:01 PM
Hi Roland,

Here is a base10000 multiplier. It works with integer arrays instead of bytes. Unlike straight binary Base10000 is very easy to manage in our decimalised world, and is more efficient than using decimal byte digits.

Code: [Select]
function btkMul(int *a,*b,*c,q)
===============================
dword i,j,k,ca,cy,oo,oq
dword aa at @a
dword bb at @b
dword cc at @c
for i=1 to q*2
  aa=0 : @aa+=4 'clearing accum
next
oo=q*4-4 'shifting offset
oq=oo    'fixed offset
for i=1 to q
  @cc=@c+oo     'multiplier
  @bb=@b+oq     'value
  @aa=@a+q*4+oo 'accum
  cyy=0         'clear accum carry
  cy=0          'clear multiply carry
  for j=1 to q
    k=bb*cc+cy : cy=0
    if k>=10000 then
      cy=k\10000
      k=edx 'remainder after cpu division
    end if
    k=k+aa+cyy : cyy=0
    if k>=10000 then k-=10000 : cyy=1
    aa=k
    @aa-=4
    @bb-=4
  next
  aa=cyy+cy 'final carries
  oo-=4 'shift left for next line mul
next
end function
Title: Re: Calculating with big numbers
Post by: Arnold on October 24, 2017, 12:16:36 AM
Hi Charles,

I tried this test:
Code: [Select]
int num1[]={9999,9999,9999,9999}
int num2[]={9999,9999,9999,9999}
int result[]={0,0,0,0,0,0,0,0}

btkMul(result[],num1[],num2[],8)

string res=""
for x=1 to 8 : res &= str(result[x]) & " " : next
print res

I get this result:
9999 9999 9999 9998 9999 9999 9999 9999

but I would expect something like this:
9999 9999 9999 9998 0000 0000 0000 0001

Do I use the function incorrectly?
In theory base 100 000 000 could also be used?

Roland
Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 24, 2017, 01:12:07 AM
Hi Roland,

It should work correctly if you specify 4 instead of 8. It assumes the result buffer is twice the size.

Base100M arithmetic is a little more complicated since the 10^16 product overflows into the edx register, but I think it can be done with a little assembler to ensure unsigned mul and div are used.
Title: Re: Calculating with big numbers
Post by: Arnold on October 24, 2017, 01:37:14 AM
Thank you Charles. I thought I must use the count of the result array.
And if I apply:
int num2[]={0,9999,9999,9999}
then the result is shown also correctly:
0 9999 9999 9998 9999 0 0 1
Title: Re: Calculating with big numbers
Post by: Arnold on October 24, 2017, 02:17:55 AM
Hi Charles,

my implementation of Karatsuba's method worked somehow but it was a lot slower than the normal school-grade multiplication. I wasted too  much time with adding the minus sign with addition / subtraction. Therefore I now started to try the functions of BigNumbers2.o2bas. But there is a problem with addition:

Code: [Select]
printl "Test bignum::add"
n1="56712345646897989899898" : n2="4321078787800789457899799978151512"
printl "n1 = " n1
printl "n2 = " n2
printl "n1 + n2 = " bignum::add(n1,n2)

Output:
Test bignum::add
n1 = 56712345646897989899898
n2 = 4321078787800789457899799978151512
n1 + n2 = ¥}NZ07┴D87857501803546697968051410
Enter ...

I expect as result:
4321078787857501803546697968051410

Is there a limit of accepted digits for addition / subtraction?

Roland


Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 24, 2017, 02:27:26 AM
I've used it to approximate the square roots of 2 and 5.

The square root of 5 is then used to calculate little phi: ( sqr(5) -1 ) / 2, which ties in nicely with the RobbeK link :)

The binary approximation is very simple with bit setting and clearing. Long division is not required, but a multiplication is required after each bit-setting to test the product against the target value.

Code: [Select]

uses console

function btkMul(int *a,*b,*c,q)
===============================
dword i,j,k,ca,cy,oo,oq
dword aa at @a
dword bb at @b
dword cc at @c
for i=1 to q*2
  aa=0 : @aa+=4 'clearing accum
next
oo=q*4-4 'shifting offset
oq=oo    'fixed offset
for i=1 to q
  @cc=@c+oo     'multiplier
  @bb=@b+oq     'value
  @aa=@a+q*4+oo 'accum
  cyy=0         'clear accum carry
  cy=0          'clear multiply carry
  for j=1 to q
    k=bb*cc+cy : cy=0
    if k>=10000 then
      cy=k\10000
      k=edx 'remainder after cpu division
    end if
    k=k+aa+cyy : cyy=0
    if k>=10000 then k-=10000 : cyy=1
    aa=k
    @aa-=4
    @bb-=4
  next
  aa=cyy+cy 'final carries
  oo-=4 'shift left for next line mul
next
end function


function btkCompare(int *b,*c,i) as int
=======================================
dword bb at @b
dword cc at @c
while i
  i--
  if bb>cc then return 1
  if bb<cc then return -1
  @bb+=4
  @cc+=4
wend
end function


int nm[32],nt[32],nr[32] 'result,target,root

'square roots
=============

'square root of 2
'using binary step approximator
indexbase 0
for i=0 to 15 : nr[i]=0 : next 'clear nr
nt[0]=200   'target value representing 2
nr[0]=1410  'estimate of square root
int b,c,i
int n at @nr 'strider for square root digits
b=8192 '0x2000 'shifting bit setter
i=16
while i
  n or= b 'set bit
  btkMul nm,nr,nr,16
  c=btkCompare(nt,nm,32)
  if c<0 then 'too large
    n xor= b 'clear bit
  end if
  shr b 'next bit down
  if b=0 then
    i--
    b=8192
    @n+=4 'next 10k down
  end if
wend

'display digits in groups of four
print "square root of 2" cr
for i=0 to 15
  print i tab mid("000"+str(nr[i]),-4) cr
next
print cr

'square root of 5 --> phi
'using binary step approximator
indexbase 0
for i=0 to 15 : nr[i]=0 : next 'clear nr
nt[0]=500   'target value representing 5
nr[0]=2200  'estimate of square root
int b,c,i
int n at @nr 'strider for square root digits
b=8192 '0x2000 'shifting bit setter
i=16
while i
  n or= b 'set bit
  btkMul nm,nr,nr,16
  c=btkCompare(nt,nm,32)
  if c<0 then 'too large
    n xor= b 'clear bit
  end if
  shr b 'next bit down
  if b=0 then
    i--
    b=8192
    @n+=4 'next 10k down
  end if
wend


'convert to little phi
nr[0]-=1000 'subtract 1
'shift right 'divide by 2
addr esi,nr
mov ecx,16
clc
pushf
(
 xor edx,edx
 popf
 (
  jnc exit
  mov edx,5000
 )
 shr dword [esi] 'shift right carry
 pushf
 add [esi],edx
 add esi,4
 dec ecx
 jg repeat
)
popf


'display digits in groups of four
print "phi" cr
for i=0 to 15
  print i tab mid("000"+str(nr[i]),-4) cr
next


waitkey
 


little phi : Fibonacci ratio
0       0618
1       0339
2       8874
3       9894
4       8482
5       0458
6       6834
7       3656
8       3811
9       7720
10      3091
11      7980
12      5762
13      8621
14      3544
15      8622


PS: is there a missing tobin call? You are crunching ascii characters instead of numbers
Title: Re: Calculating with big numbers
Post by: Arnold on October 24, 2017, 05:01:35 AM
I refer to BigNumbers2.o2bas which you provided with reply#4. I only added the code after namespace for testing addition. I tried to use tobin / toasc:

Code: [Select]
printl "Test bignum::add"
string n1,n2,result
n1="56712345646897989899898" : n2="4321078787800789457899799978151512"
printl "n1 = " n1
printl "n2 = " n2
bignum::tobin(n1)
bignum::tobin(n2)
result = bignum::add(n1,n2)
bignum::toasc(result)
printl result

but this does not help neither. Should I do something differently?
Edit: I see that you already applied tobin and toasc macro in the function add. So there must be another reason for the wrong result.
Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 24, 2017, 05:59:31 AM
Yes, I see toasc and tobin are both handled internally ok.

The problem is mismatched lengths for n1 and n2

You can either pad with zeros on the left side or use a function to match the lengths for you:

Code: [Select]
function MatchLength(string *n1,*n2)
====================================
int l1=len n1
int l2=len n2
if l1>l2 then n2=stringbytes(l1-l2,48)+n2 : return
if l2>l1 then n1=stringbytes(l2-l1,48)+n1 : return
end function

...

printl "Test bignum::add"
string n1,n2,result
n1="56712345646897989899898"
n2="4321078787800789457899799978151512"
MatchLength(n1,n2)
printl "n1 = " n1
printl "n2 = " n2
printl "sum= " add(n1,n2)


Title: Re: Calculating with big numbers
Post by: Arnold on October 24, 2017, 06:31:50 AM
Hi Charles,

thank you again. I also just noticed that n1 and n2 expect the same length. I will use Matchlength to pad the zeros.

Roland
Title: Re: Calculating with big numbers
Post by: Arnold on October 24, 2017, 09:36:02 AM
Hi Charles,

this is really fantastic. (if I did this correctly).
I used your functions of BigNumbers2.o2bas for Karatsuba's method:

Code: [Select]
....
....

namespace

  function MatchLength(string *n1,*n2)
  ====================================
  int l1=len n1
  int l2=len n2
  if l1>l2 then n2=stringbytes(l1-l2,48)+n2 : return
  if l2>l1 then n1=stringbytes(l2-l1,48)+n1 : return
  end function


function multiply(string a,b) as string
'http://www.rosettacode.org/wiki/Arbitrary-precision_integers_(included)#Pure_C
'https://en.wikipedia.org/wiki/Multiplication_algorithm#Karatsuba_multiplication
'https://en.wikipedia.org/wiki/Karatsuba_algorithm#Pseudocode

   string high1,high2,low1,low2
   string z0,z1,z2, t1a, t1b, r1,r2,r3, result
   int le,le1,le2,t

   le1=len(a) : le2=len(b)
   if le1 < 64 or le2 < 64 then
     return bignum::mul(a,b)
   end if

   'calculates the size of the numbers
   le=le1
   if le2>le1 then le=le2
   int t=mod(le,2)
   int m=le+t
   int mby2 = m\2 

   'split the digit sequences about the middle
   'high1, low1 = split_at(num1, m2)
   'high2, low2 = split_at(num2, m2)

   high1=left(a,le1-mby2) : low1=mid(a,-mby2)
   if len(high1)=0 then high1="0"   
   high2=left(b,le2-mby2) : low2=mid(b,-mby2)
   if len(high2)=0 then high2="0"

    ' 3 calls made to numbers approximately half the size
    ' z0 = karatsuba(low1,low2)
    ' z1 = karatsuba((low1+high1),(low2+high2))
    ' z2 = karatsuba(high1,high2)

    z2 = multiply(high1,high2)
    z0 = multiply(low1,low2)

      MatchLength(high1,low1)
      t1a=bignum::add(high1,low1)
      MatchLength(high2,low2)
      t1b=bignum::add(high2,low2)
    z1 = multiply(t1a,t1b)

    ' return (z2*10^(2*m2))+((z1-z2-z0)*10^(m2))+(z0)           

      t1 = bignum::sub(z1,z2)
      t2 = bignum::sub(t1,z0)

      r1=z2 & stringbytes(m,48)     
      r2=t2 & stringbytes(mby2,48)
      MatchLength(r1,r2)
      r3 = bignum::add(r1, r2)
      MatchLength(r3,z0)     
    result = bignum::add(r3, z0)

   return bignum::zerotrim result
end function


'TEST

'Use Windows functions
! GetTickCount lib "kernel32.dll" () as sys

function str_exp(int b, int n) as string
  string result, a

  result="1"
  a=str(b)

  if n=0 then return result
 
  while n > 0
    if n and 1 then 'mod(n,2)=1 then
      result = multiply(result, a)     
    end if
    n = n >> 1 '\= 2
    if n=0 then exit while   
    a = multiply(a, a)
  wend

  return result
end function


for z=3 to 4'4
for x=2 to 3
for y=1 to 2
   z1=str_exp(x,y)
   printl z1
   z2=str_exp(z,z1)
   printl z2
   
   t1=GetTickCount()
   printl "Calculatating 5^" z "^" x "^" y " which is 5^" z2 & cr

   z3=str_exp(5,z2)

   t2=(GetTickCount()-t1)/1000
   printl "Length for result of 5^" z "^" x "^" y " is " len(z3)
   printl "First 20 digits: " left(z3,20)
   printl "Last 20 digits:  " mid(z3,-20)
   printl "This took " str(t2,3) " seconds"
   printl
next y
next x
next z

printl "Enter ... " : waitkey

/*
GCC compiled:
Length of 5^4^3^2 is 183231
First 20 digits:  62060698786608744707
Last 20 digits:   92256259918212890625
This took about 300 seconds on my 12 years old notebook
*/

I used this to solve the Rosettacode challenge 5**262144. The execution time is 4 to 5 times faster than the compiled gcc code (which applied only school-grade multiplication).

Most probably the code can still be optimized. But the result is already really cool.

Roland
Title: Re: Calculating with big numbers
Post by: Charles Pegge on October 25, 2017, 10:12:20 PM
Here is the base100million multiplier. It is slightly more complex than base10000 due to the eax register overflow, and I lapse into a short section of assembly code. It could be adapted quite easily for use with BigNum strings, and provide a 50..60X speed improvement over base10 multiplication.

Code: [Select]

uses console

function bhmMul(dword *a,*b,*c,q)
=================================
dword d,i,j,k,ca,cy,oo,oq,m100=1E8
dword aa at @a
dword bb at @b
dword cc at @c
for i=1 to q*2
  aa=0 : @aa+=4 'clearing accum
next
oo=q*4-4 'shifting offset
oq=oo    'fixed offset
for i=1 to q
  @cc=@c+oo     'multiplier
  @bb=@b+oq     'value
  @aa=@a+q*4+oo 'accum
  cyy=0         'clear accum carry
  cy=0          'clear multiply carry
  for j=1 to q
    'k=bb*cc+cy : cy=0
    'if k>=m100 then
    '  cy=k\m100
    '  k=edx 'remainder after cpu division
    'end if
    addr edi,bb
    mov eax,[edi]
    addr edi,cc
    mul [edi]
    mov ecx,m100
    div ecx
    mov d,eax   'output carry
    add edx,cy  'input carry
    mov eax,edx 'remainder == modulus
    cmp eax,ecx
    (
      jb exit
      inc d
      sub eax,ecx
    )
    mov k,eax
    cy=d
    k=k+aa+cyy : cyy=0 'accum add with carry
    if k>=m100 then k-=m100 : cyy=1
    aa=k
    @aa-=4
    @bb-=4
  next
  aa=cyy+cy 'final carries
  oo-=4 'shift left for next line mul
next
end function


function bhmCompare(dword *b,*c,i) as int
=========================================
dword bb at @b
dword cc at @c
while i--
  if bb>cc then return 1
  if bb<cc then return -1
  @bb+=4
  @cc+=4
wend
end function



indexbase 0
int nm[32],nt[32],nr[32] 'result,target,root

/*
int nr[32],n1[32],n2[32]
'n1=14140000
'n2=14140000
'n1=22300002
'n2=22300002
'n1=87654321
'n2=2000000
bhmmul(nr,n1,n2,16)
for i=0 to 31
  print i tab mid("0000000"+str(nr[i]),-8) cr
next
print cr
*/


'square roots
=============

'square root of 2
'using binary step approximator
indexbase 0
for i=0 to 31 : nr[i]=0 : next 'clear nr
nt[0]=02000000   'target value representing 2
int b,c,i
int n at @nr 'strider for square root digits
b=0x8000000 '67,108,864 shifting bit setter
i=16
while i
  n or= b 'set bit
  bhmMul nm,nr,nr,16
  c=bhmCompare(nt,nm,16)
  if c<0 then 'too large
    n xor= b 'clear bit
  end if
  shr b 'next bit down
  if b=0 then
    i--
    b=0x4000000
    @n+=4 'next 100M down
  end if
wend

'display digits in groups of eight
print "square root of 2" cr
for i=0 to 15
  print i tab mid("0000000"+str(nr[i]),-8) cr
next
print cr
'  1.4142135623730950488016887242096980785696718753769480731766797379907324784621


'square root of 5 --> phi
'using binary step approximator
indexbase 0
for i=0 to 31 : nr[i]=0 : next 'clear nr
nt[0]=05000000 'target value representing 5
int b,c,i
int n at @nr 'strider for square root digits
b=0x4000000 '67,108,864 shifting bit setter
i=16
while i
  n or= b 'set bit
  bhmMul nm,nr,nr,16
  c=bhmCompare(nt,nm,32)
  if c<0 then 'too large
    n xor= b 'clear bit
  end if
  shr b 'next bit down
  if b=0 then
    i--
    b=0x4000000
    @n+=4 'next 10k down
  end if
wend

'display digits in groups of eight
print "square root of 5" cr
for i=0 to 15
  print i tab mid("0000000"+str(nr[i]),-8) cr
next
'2.2360679774997896964091736687312762354406183596115257242708972454105209256378



'convert to little phi
nr[0]-=10000000 'subtract 1
'shift right 'divide by 2
addr esi,nr
mov ecx,16
clc
pushf
(
 xor edx,edx
 popf
 (
  jnc exit
  mov edx,50000000
 )
 shr dword [esi] 'shift right carry
 pushf
 add [esi],edx
 add esi,4
 dec ecx
 jg repeat
)
popf


'display digits in groups of eight
print "phi" cr
for i=0 to 15
  print i tab mid("0000000"+str(nr[i]),-8) cr
next
'61803398874989484820458683436563811772030917980576286213544862270526046281890

'print 0x4000000 cr '67,108,864
'print hex 67108864


waitkey
 
Title: Re: Calculating with big numbers
Post by: Arnold on October 30, 2017, 03:37:54 AM
Hi Charles,

your bhmMul routine is of course very fast. I tried this again with the Rosetta challenge:

Code: [Select]
...
,,,

  function ZeroTrim(string a) as string
  =====================================
  byte aa at strptr a
  int la=len a
  int c=1
  while la
    if aa>48 then return mid a,c
    la-- : c++ : @aa++
  wend
  end function

sub ZeroIntTrim(int a[], int *count)
  int aa at @a
  int *cnt = @count
                                     
  int c=1
  while aa[c]=0
     c+=1
  wend
  c-=1
  if c>0 then
    for x=1 to count
       diff=x+c           
       aa[x]=aa[diff]
    next
  end if
  cnt = count-c 
end sub

function big2string(int n[],count) as string
   string s
   
   for x=1 to count
      s += mid("0000000"+str(n[x]),-8)
   next
   return s     
end function


' Test
'Use Windows function
! GetTickCount lib "kernel32.dll" () as sys

printl "Calculting 5^4^3^2 which is 5^262144"
t1=GetTickCount()

int result[25000], n[25000] 'result,target,root
int cn=1                    'count

n={5}
for y = 1 to 18
   bhmMul(result, n,n,cn)
   cn=cn+cn
   for x=1 to cn
     n[x]=result[x]
   next 
   zeroIntTrim(n,cn)
next

string s=zeroTrim big2string(n,cn)

t2=(GetTickCount()-t1)/1000
printl "Length for result of 5^4^3^2 is " len(s)
printl "First 20 digits: " left(s,20)
printl "Last 20 digits:  " mid(s,-20)
printl "This took " str(t2,3) " seconds"
printl

printl "Enter ... " : waitkey

'Length of 5^4^3^2 is 183231
'First 20 digits:  62060698786608744707
'Last 20 digits:   92256259918212890625

I assume my code is not very clever, but the program beats the execution time of the provided C-code easily by a factor of 10 to 14.

Nevertheless I like your routines of BigNumbers2.o2bas very much. All basic calculus are provided, I do not need fixed precision and it gives me a feeling of school-grade calculation. I will use them to evaluate some formulas walking in the footsteps of some mathematical heros, without the need of using libraries like GMP or LibTomMath.

Unfortunately I was not very good in mathematics during my school time. But I suspect my teachers were not very qualified neither. And many findings have been discoverd only in recent years.

I wondered about the use of counting with big numbers. Searching in Internet there are surprisingly several application areas, not only dealing with public-key cryptograpy. And I like the feeling that I can be more precise than my windows calculator.

Roland
Title: Re: Calculating with big numbers
Post by: JRS on October 30, 2017, 05:57:42 PM
Maybe Charles work will lead to faster bitcoin mining.  :)
Title: Re: Calculating with big numbers
Post by: Arnold on November 03, 2017, 02:12:10 AM
This is a small app to calculate Pi to several places, derived from a pascal program which I found at RosettaCode.org. It applies a dynamic array to store the digits.
I learned that there is a man in Japan who could memorize and recite 100000 digits of Pi in about 16.5 hours. But I will not need so many digits.

Roland

Code: OxygenBasic
  1. 'http://rosettacode.org/wiki/Pi#Pascal
  2. 'http://www.pi314.net/eng/goutte.php
  3.  
  4. /* A spigot algorithm for the digits of pi,
  5.    Stanley Rabinowitz and Stan Wagon
  6. */
  7.  
  8. include "$/inc/console.inc"
  9.  
  10. function Pi_Spigot(int n) as string
  11.    int  count, j, k, q, nines, predigit
  12.    int x,i
  13.    int idx
  14.  
  15.    count = 10*n \ 3
  16.  
  17.    'Create dynamic array
  18.   sys aa=getmemory count * sizeof(uint)
  19.    uint a at aa
  20.  
  21.    string s = stringbytes(n,0)  'nuls  
  22.   byte ss at strptr s
  23.  
  24.    for j = 1 to count
  25.       a[j] = 2                  'Start with 2s
  26.   next j
  27.    nines = 0
  28.    predigit = 0                 'First predigit is a 0
  29.  
  30.    for j = 1 to n
  31.       if mod(j,1000) = 0 then print j & cr  
  32.    
  33.       'Only calculate as far as needed
  34.      '+16 for security digits ~5 decimals
  35.      i = (n-j)*10 \ 3 +16
  36.       if i > count then i = count
  37.       q = 0
  38.       do                        'Work backwards
  39.         x  = 10*a[i] + q*i
  40.          q = x \ (2*i - 1)
  41.          a[i] = x - q*(2*i - 1) 'mod(x,2*i - 1)
  42.         i--
  43.          if i<= 0 then exit do
  44.       end do
  45.  
  46.       a[1] = mod(q,10)
  47.       q = q \ 10    
  48.       if q = 9 then
  49.         nines += 1
  50.       else
  51.         if q = 10 then
  52.           idx++ : ss[idx]=predigit+1
  53.           for k = 1 to nines : idx++ : ss[idx]=0 : next k   'zeros
  54.          predigit = 0
  55.           nines = 0
  56.         else      
  57.           if j > 1 then idx++ : ss[idx]=predigit
  58.           predigit = q
  59.           if nines <> 0 then
  60.             for k = 1 to nines : idx++ : ss[idx]=9 : next k 'nine
  61.            nines = 0
  62.           end if
  63.         end if
  64.       end if
  65.    next j
  66.    idx++ : ss[idx]=predigit
  67.  
  68.    'convert to ascii
  69.   for x=1 to n : ss[x]+=48 : next x
  70.  
  71.    'release dynamic array
  72.   freememory aa
  73.  
  74.    return s
  75. end function
  76.  
  77. cls
  78. print "This will calculate pi and save the result as a text file"
  79. printl "How many digits? "
  80. int num=val(rtrim ltrim input())
  81.  
  82. string s=Pi_Spigot(num)
  83. print s
  84.  
  85. putfile("pi.txt",s)  
  86.  
  87. printl
  88. printl "Saved as pi.txt"
  89. printl "Enter ... " : waitkey
  90.  

.
Title: Re: Calculating with big numbers
Post by: Charles Pegge on November 03, 2017, 11:56:49 PM
Hi Roland,

Many thanks for demonstrating this Pi algorithm. I'm studying it closely, as with the Keratsuba multiplication.

I can get your Karatsuba demo to run twice the speed by using base100 and digit lookup tables inside the bignum::mul function, along with some assembler on the inner loop.

Karatsuba reminds me of merge-sort which breaks the deadly exponential computation of Bubble-sort

Title: Re: Calculating with big numbers
Post by: Arnold on November 04, 2017, 03:35:42 AM
Hi Charles,

you will make my old machine run really fast. But this is also a reason why I still prefer my old notebook to my new one, I can see the gain of speed at once visually. And therefore I know that Oxygenbasic in fact does a very good job.

There is also the BBP formula which is a special spigot algorithm. Details and demos can be found at David H.Bailey's website:
http://www.davidhbailey.com/
http://www.experimentalmath.info/bbp-codes/

I assume the use of the BBP algorithm is more effective in some cases and will save memory and execution time. But unfortunately I have not yet found out how this will work correctly with Oxygenbasic.

Roland
Title: Re: Calculating with big numbers
Post by: Arnold on November 04, 2017, 07:31:44 AM
This is a nice little routine to compute the mathematical constant Euler's number e to a given amount of digits. As e is of great importantance in mathematics it could be useful sometimes to have access to it. Although nowadays one can paste almost everything from Internet.

Code: OxygenBasic
  1. ' http://faculty.cs.tamu.edu/klappi/csce411-s15/csce411-set1.pdf
  2. ' compute N digits of Euler's number e, using Spigot algorithm
  3.  
  4. include "$/inc/console.inc"
  5.  
  6. declare function e_spigot(int N) as string
  7.  
  8. SetConsoleTitle "Euler's number e"
  9. string s = e_Spigot(150)
  10. printl s
  11.  
  12. putfile("e.txt",s)
  13. printl
  14. printl "Saved as e.txt"
  15.  
  16. printl "Enter ... " : waitkey
  17. ------------------------------
  18.  
  19. function e_Spigot(int N) as string
  20.    int q, idx
  21.  
  22.    'int A[N]
  23.   sys aa=getmemory N * sizeof(int)
  24.    int A at aa
  25.  
  26.    string s = stringbytes(N,0)      'nuls  
  27.   byte ss at strptr s
  28.    idx++ : ss[idx]=2
  29.    
  30.    for j = 1 to N
  31.       A[j] = 1                      'set all digits of nonintegral part to 1.
  32.   next j                          
  33.  
  34.    for i = 1 to N-2
  35.       if mod(i,1000) = 0 then printl i
  36.       q = 0
  37.       j=N
  38.       while j > 0
  39.          A[j] = 10 * A[j] + q
  40.          q = A[j] \ (j + 1)         'amount that needs to be carried
  41. '         A[j] = mod(A[j],(j + 1))   'keep only remainder
  42.         A[j] = edx
  43.          j--
  44.       wend
  45.       idx++ : ss[idx] = q
  46.    next i
  47.    
  48.    'convert to ascii
  49.   for x=1 to n : ss[x]+=48 : next x
  50.  
  51.    'release dynamic array
  52.   freememory aa
  53.  
  54.    return s  
  55. end function
  56.  
Title: Re: Calculating with big numbers
Post by: Charles Pegge on November 07, 2017, 09:35:28 PM
Thanks Roland,

Very similar to the Pi algorithm

I am also looking for a spigot algorithm to approximate square roots. The series for roots cannot be formulated in the same way as Pi and Euler, since it involves recursive division. It cannot be split into discrete digits. But I think it can be done by refining the binary approximation procedure, by eliminating repeated calculations at the upper end, as the digits resolve from left to right.
Title: Re: Calculating with big numbers
Post by: Charles Pegge on November 09, 2017, 06:03:01 PM
Hi Roland,

While studying the left-to-right addition in the Pi algorithm, I found that it gave incorrect values at the end of 200 and 400 digit series. This was due to digits remaining in the nines buffer.

The end of the spigot function should look something like:
Code: [Select]
...
  next j
  idx++ : ss[idx]=predigit 'final predigit
  if nines then 'remaining nines
    for k = 1 to nines
      idx++ : ss[idx]=9
    next k
    nines = 0
  end if
  'to ascii
  for j=1 to len s
    ss[j]+=48
  next
  return s
end function

.
Title: Re: Calculating with big numbers
Post by: Arnold on November 10, 2017, 08:02:40 AM
Hi Charles,

your code of PiAlgorithm2.o2bas looks so clear, I wished I could do this in some way too. And you are right, the last digit produced with my PiSpigot.o2bas is different in some cases. (200, 400 is wrong, 201 and 401 would work). I would never had found this difference. I testet for 100000 digits and some other numbers and compared with http://www.pibel.de/ but I could not find a difference with these counts, so I assumed the code would be ok. But PiAlgorithm2.o2bas should have fixed this remaining problem now.

Roland

Edit: the attached text file includes in fact 100001 digits, I always forget the preceeding 3.

.