Otherwise it would be possible to produce very similar binary without using any assembler.
Sort of like building a log cabin with a hatchet.
double randDouble(double low, double high)
{
double temp;
/* swap low & high around if the user makes no sense */
if (low > high)
{
temp = low;
low = high;
high = temp;
}
/* calculate the random number & return it */
temp = (rand() / (static_cast<double>(RAND_MAX) + 1.0))
* (high - low) + low;
return temp;
}
indexbase 0
include "window.h"
Finit
SetWindow "Birds",800,600,w_1
SetFont 12,12,0,""
While WinExit=0
cls 0
For jx=0 To 1000
SetText "*", Rand(0,1800) /Log(10),Rand(0,1400) /Log(10), RGB(Rand(64,255),Rand(64,255),Rand(64,255))
Next
Pause
DoEvents
SwapBuffers
Wend
WinEnd
'-------------------------------
method hashcode(string s) as sys
'===============================
xor eax,eax
mov edx, [s] ' name pointer
mov ecx, [edx-4] ' length
(
cmp ecx,0
jnz exit
return 0 'EMPTY WORD WILL TRIGGER HASHCODE ERROR LATER
)
mov ah, cl ' assume max length 255
mov al, [edx] ' 1st letter
cmp cl,1
(
jz exit
shl eax,3
xor al, [edx+1] ' 2nd letter
shl eax,3
(
rol eax,1
xor al, [edx]
inc edx
dec ecx
jnz repeat
)
)
return eax
'
end method
Function sgn (Single a) as single 'sign
single sgn
iF a < 0
sgn= -1
Else
sgn = 1
End iF
Return sgn
End Function
Function Sec(single x) as single 'Secant
Return 1 / Cos(x)
End Function
Function CoSec(single x) as single 'CoSecant
Return 1 / Sin(x)
End Function
Function CoTan(single x) as single 'CoTangent
Return 1 / Tan(x)
End Function
Function ArcSin(single x) as single 'Inverse Sine
Return Atn(x / Sqr(-x*x+1))
End Function
Function ArcCos(single x) as single 'Inverse Cosine
Return Atn(-x / Sqr(-x*x+1))+2*Atn(1)
End Function
Function ArcSec(single x) as single
Return Atn(x / Sqr(x*x-1))+Sgn((x)-1)*(2* Atn(1)) 'Inverse Secant
End Function
Function HSin(single x) as single 'Hyperbolic Sine
Return (Exp(x)-Exp(-x)) /2
End Function
Function HCos(single x) as single 'Hyperbolic Cosine
Return (Exp(x) + Exp(-x)) /2
End Function
Function HTan(single x) as single 'Hyperbolic Tangent
Return (Exp(x)-Exp(-x)) / (Exp(x)+Exp(-x))
End Function
def ArcTan atan
def Arctn atn
def ArcSin asin
def ArcCos acos
deff Secant
fcos : fld1 : fdivrp st1
end deff
deff Cosecant
fsin : fld1 : fdivrp st1
end deff
deff Cotan
fptan : fld1 : fdivrp st1
end deff
deff ArcCotan
fld1 : fdivrp st1
fpatan
end deff
deff ArcSecant
fld1 : fdivrp st1
fld st0 : fmul st0 : fld1 : fsubp st1,st0 : fchs : fsqrt : fxch : fpatan
end deff
deff ArcCoSecant
fld1 : fdivrp st1
fld st0 : fmul st0 : fld1 : fsubp st1,st0 : fchs : fsqrt : fpatan
end deff
deff sgn
fldz
fcomip
fstp st0
(
ja fwd lt
jb fwd gt
fldz : exit
.gt
fld1 : exit
.lt
fld1 : fchs
)
end deff
jmp fwd nex
.exp_
sub esp,16 : fstcw [esp] : fstcw [esp+2] : or [esp],0xc00 : fldcw [esp]
fldl2e : fmulp st1 : fld st0 : frndint : fsub st1,st0
fxch : f2xm1 : fld1 : faddp st1 : fscale : fstp st1
fldcw [esp+2] : add esp,16
ret
.nex
deff sinh
'(Exp(x) - Exp(-x)) /2 'Hyperbolic Sine
fld st0
call exp_
fxch st1
fchs
call exp_
fld st1
fsub st1
fld1
fadd st0
fdivp st1
fxch st2
fstp st0
fstp st0
end deff
deff cosh
'(Exp(x) + Exp(-x)) /2 'Hyperbolic Cosine
fld st0
call exp_
fxch st1
fchs
call exp_
fld st1
fadd st1
fld1
fadd st0
fdivp st1
fxch st2
fstp st0
fstp st0
end deff
deff tanh
'(Exp(x)-Exp(-x)) / (Exp(x)+Exp(-x)) 'Hyperbolic Tan
fld st0
call exp_
fxch st1
fchs
call exp_
fld st1
fsub st1
fld st2
fadd st2
fdivp st1
fxch st2
fstp st0
fstp st0
end deff